
The DoD Source for Software Technology Information.

Vol. 3- No. 2
Software Testing

Part 1

Software

Testing
Series: Part 1

Newsletter Series: Software Testing

In This Issue:

Testing Software: Challenges for
the Future 2

Object-Oriented Technology
in Testing 5

More Reliable, Faster, Cheaper
Testing with Software
Reliability Engineering 8

Website Testing 12

Improving Information Quality
for the Warfighter through Self-
Checking Systems 18

DACS Task Wins a
Hammer Award 23

Software Testing
Resources on the WWW.... 24

DACS Products
Order Form Insert

Read additional Software
Testing materials at:

www.dacs.dtic.mil/
awareness/newsletters/

listing.shtml

This is the first in a series of newsletters devoted to

Software Testing.

The Software Tech News will periodically devote an issue to this important topic.

Call for Articles:
Potential authors may submit an article on Software Testing for publication in a

future issue of the Software Tech News through one of the following methods:

E-mail: ldean@dacs.dtic.mil Any questions contact:

Fax (315) 334-4964 Lon R. Dean - Editor

Mail: DoD Data & Analysis ldean@dacs.dtic.mil

Center for Software (800) 214-7921

Attn: Software Tech News Editor

775 Daedalian Drive

Rome, NY 13441-4909

A sampling of the articles scheduled to appear in Software

Testing Part 2 include:

Testing Software Based Systems: The Final Frontier, Thomas Drake, Coastal

Research and Technology

Using Models for Test Generation, Mark Blackburn, Software Productivity

Consortium

Task-Based Software Testing, Daniel Telford, MacAulay Brown

Thread Based Integration Testing: Lessons Learned from an Iterative

Approach, William Borgia and Neil Hrdlick, Northrup Grumman

Lon R. Dean
Thank you for your interest in the Software Tech News.Past issues are archived on the Data & Analysis Center for Software's Website at: http://www.dacs.dtic.mil/.

http://www.dacs.dtic.mil/awareness/newsletters/listing.shtml
http://www.dacs.dtic.mil/
http://www.defenselink.mil/
http://www.dtic.mil/
http://www.disa.mil/
mailto:ldean@dacs.dtic.mil
mailto:ldean@dacs.dtic.mil

STN2

Introduction

When I hear the word testing, I

become stressed. What a headache,

I think. Pictures flash through my

head of teams burning the midnight

oil trying to get a product out. Ed

Yourdon’s book Death March1

comes to mind along with visions of

sleepless nights and troublesome

days. Thoughts about budget and

schedule problems clutter my head

along with the seemingly ever-

present performance problems that

always seem to arise near the end of

the project. I ponder, “how did we

get in so much trouble?” and

contemplate “have things gotten any

better?”

When you give these questions

some thought, you realize that we

have made great strides in the realm

of testing over the past decade,

including shifts to incremental

development and delivery that

address persistent integration

problems. Test management

processes have matured and people

seem to be paying attention to test

issues earlier in their programs.

Test methods and tools that we

talked about just a decade ago are

currently being used and working.

Most important, we no longer seem

to be beating our heads against the

wall as we try to cope with the

issues and challenges that seem to

pop up the moment we start

integrating and testing our products.

Test Technology Has

Moved Ahead

Let’s look at the improvements by

summarizing how we’ve dealt with

the problems that existed just a

decade ago. Then, let’s look to the

future to identify the challenges that

testing must face in the near-term.

To check out where we’ve made

progress, I’ve consulted some

friends, old and new, in my

bookcase and periodicals rack2. For

example, I reviewed Fred Brooks’s

Mythical Man-Month3, Tom

DeMarco’s Controlling Software

Projects4, Bob Glass’ Recollections

of Software Pioneers5, Walker

Royce’s excellent new book

Testing Software: Challenges for the Future
by Don Reifer, Reifer Consultants, Inc.

Table 1 Coping with Test Problems

No. Problem Current Wisdom

1 Testing considered late in the project Start test planning and preparation the day that

you start the project

2 Requirements not testable Validate testability of requirements as you write

the specification7

3 Integrate after all components have been Build a little, then test a little. Don’t wait until

thoroughly tested the last moment to test. Try before you buy.

4 One step forward, two steps backward Use repeatable processes to order the manner

in which you integrate and test the system

5 Regression testing done ad hoc Automate the test process and use tools to specify,

perform and administer the conduct8

6 Test progress hard to measure (Test until Use a variety of standard software metrics to

you and/or your budget is exhausted) determine whether you have tested enough9

Software Project Management6 and

others to see what they said on the

subject of testing. They, and the test

books that I have reviewed, seem to

agree with the following

observations relative to the test

wisdom that is summarized in

Table 1.

New Challenges, Old

Problems

Not only have we made progress in

the world of testing, we’ve started

tackling a host of new challenges.

The world of software development

is undergoing a lot of change these

days with the influx of new

paradigms (spiral, incremental

development, drop and ship, etc.),

technology (Java, active agents, etc.)

and component-based software

development. This change has

fostered new approaches to

evaluating and qualifying software

components. For example, agents

are now being used as part of

several modern development

environments to capture metrics

data automatically. These metrics

STN 3

may trigger actions when error rates

and other indicators show quality

goals are not being realized. Table 2

identifies some of the new

challenges the test community faces

and summarizes how they are trying

to address them.

That’s great news, you’re probably

thinking. We’ve got the test demon

under control. Well, that’s not

exactly the case. Only leading firms

within the industry has put these

concepts to work systematically,

repeatedly and consistently. The

major reason behind this gap

between theory and practice is

simple, people buckle under

deadline pressures. Anyone who’s

been there understands the problem.

Software projects tend to get into

trouble a little at a time, not all at

once. As things go awry, process

improvements, disciplined methods

and other good ideas are discarded

as efforts are made to stay on

schedule. So, it seems we still face

the same issues we did a decade ago

even in light of the progress we have

made. Simply stated, when we Continued on page 4

Table 2. Addressing New Test Challenges

No. Challenge Current Solution Approach

1 Incremental and spiral paradigms10 Incremental testing; regression test baseline; early user
testing (hopefully with prototype); use cases to define
threads through software per usage views

2 COTS-based development paradigm11 Try before you buy; performance benchmarking; open
Application Program Interface (API); preferred package
and vendor lists; simplify glue code development

3 Component-based development paradigm11 Open API; agent-based testing; use cases to group
components into test sets; test harness (with standard
instrumentation to test fine-grained passive/active parts)

4 Java (active applets)* Agent-based testing; fuzzy set theory (localization).
Neural networks (dynamic instantiation); Java virtual
machine restriction and instrumentation

5 Active agents (including web-based Brute force testing using distributed test technology;
robots, spiders, etc.)* Java testing concepts (see 4); knowledge-based extensions

(smart agents; ORB based guardians, etc.)

*Still being researched. Body of test knowledge about what works and what doesn’t is not available yet for test community’s use.

become entangled in the “crunch

mode,” testing discipline seems to

go out the door.

Test research suffers similar

maladies. There still is a push to

improve specification technology.

The motivation is to get rid of errors

early and eliminate the need to test.

While philosophically appealing, we

still haven’t figured out how to tame

the specification beast. This

emphasizes the need for research to

address the test issues identified in

Table 2. Unfortunately, the

university and research community

is not addressing this need. When

you review the premier research

programs in the United State and

abroad, you see that most of their

money is being spent on

development rather than test topics.

Are my conclusions relative to

progress within the testing field still

valid? Let me answer this question

by posing some questions. What

would your management do when

faced with a potential schedule slip?

Would they have the guts to delay

shipment because they are worried

about poor product quality? Would

they accept the risks inherent in

deferring documenting the test

results and getting their regression

tests in order until after the delivery

were made? How would they

handle the situation when the user is

screaming for results, members of

the team are transitioning to new

projects, and everyone involved

seems overstressed, overworked and

tired? What would you do if you

were placed in their shoes?

Opportunities and

Dilemmas

In spite of the advances we seem to

have made in the technology, we can

conclude that the same pressures to

release prematurely persist when it

comes to testing. Perhaps, this is an

important message. It says to me

that we may need to alter the path

we take as we embark on our quest

for new and better ways to handle

the test challenges I’ve outlined.

STN4

Testing Software: Challenges for the Future
Continued from page 3

When you perform a root cause

analysis to determine the real

problem, you can make the

following three observations:

• We never seem to allocate enough

time and effort to testing

activities. Even those who do

seem to get into trouble because

their management tends to

reallocate these resources to

others as problems arise. In

response, maybe we should

calibrate our estimation models

more precisely to our actual test

experience so that we have

adequate resources when we start

off. Then, we could put processes

in place to allocate reserves

retained to deal with risk instead

of taking funds away from the

testing effort.

• Management at all levels of the

organization doesn’t seem to fully

understand what it takes to be

successful in a test effort. They

don’t realize that large investment

for processes, tools, techniques,

facilities, and infrastructure is

needed in order to put test

technology to work for them.

Perhaps, the test community

needs to do a better job of

educating their management

about their needs. But, they need

to do so armed with the data that

was derived above about what it

really takes to get the job done.

• Test management tends to pay

more attention to the technical

than the management issues. For

example, they focus on test

methods and tools instead of

processes and infrastructure. I

believe that the order of

concentration should be reversed.

Weave your test expectations into

your standard software

development process. If you use

the Capability Maturity Model as

your framework12, do this in such

a way that a test discipline is a

natural part of the way that you

conduct your business. If you are

pursuing ISO certification, define

quantitative test expectations for

your gate checklists.

I’d like to issue a call to action.

Let’s do something about this state

of affairs. Let’s view these three

observations as opportunities, not

challenges. Instead of complaining

that we don’t have the resources to

do the job right, let’s gather data

about our test experience and

publish it, to help set reasonable

expectations. Let’s ask professional

groups like the International Society

of Parametric Analysts (ISPA) and

the International Function Point

Users Group (IFPUG) to prepare

benchmarks about testing for the

community. Let’ stimulate more

work on test issues within the

universities and research

institutions. Most importantly, let’s

use the data we publish to prepare

business cases for improving our

processes and inserting a viable test

management infrastructure as we

initiate our education activities.

About the Author
Donald J. Reifer is one of the leading

figures in the field of software

engineering and management with

over 30 years of progressive

experience in both industry and

government. Recently, Mr. Reifer

managed the DoD Software Initiatives

Office under an Intergovernmental

Personnel Act assignment with the

Defense Information Systems Agency

(DISA). As part of this assignment,

he also served as the Director of the

DoD Software Reuse Initiative and

Chief of the Ada Joint Program Office.

Previously, while with TRW, Mr.

Reifer served as Deputy Program

Manager for their Global

Positioning Satellite (GPS) efforts.

While with the Aerospace

Corporation, Mr. Reifer managed all

of the software efforts related to the

Space Transportation System (Space

Shuttle).

Currently, as President of RCI, Mr.

Reifer supports executives in many

Fortune 500 firms who are looking

to develop investment strategies and

improve their software capabilities

and capacity. Mr. Reifer is the

Principal Investigator on our best

software acquisition practices and

information warfare SBIR efforts.

He is also helping develop a variety

of estimating models as a senior

research associate on the USC

COCOMO II team led by Dr. Barry

Boehm.

Mr. Reifer was awarded the

Secretary of Defense's Medal for

Outstanding Public Service in 1995

for the innovations he brought to the

DoD during his assignment. Some

of his many other honors include the

Hughes Aircraft Company

Fellowship, the Frieman Award for

advancing the field of parametrics,

the NASA Exceptional Service

Medal and membership in Who's

Who in the West.

Author Contact Information
Donald J. Reifer

Reifer Consultants Inc.

P.O. Box 4046

Torrance, CA 90510-4046

Phone: (310) 530-4493

Fax: (310) 530-4297

info@reifer.com

www.reifer.com

References on page 5

http://www.reifer.com/
mailto:info@reifer.com

STN 5

References

[1] Edward Yourdon, Death March, Prentice-Hall, 1997.

[2] Publications like Software Testing & Quality Engineering and Component Strategies.

[3] Frederick P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, 1975.

[4] Tom DeMarco, Controlling Software Projects, Yourdon Press, 1982.

[5] Robert L. Glass, In the Beginning: Recollections of Software Pioneers, IEEE Computer Society, 1997.

[6] Robert Walker Royce, Software Project Management: A Unified Framework, Addison-Wesley, 1998.

[7] Hans-Erik Eriksson and Magnus Penker, UML Toolkit, John Wiley & Sons, 1998.

[8] Lawrence H. Putnam and Ware Myers, Measures for Excellence, Prentice-Hall, 1992.

[9] Software Productivity Consortium, Software Measurement Guidebook, International Thomson Computer Press, 1995.

[10] Philippe Kruchten, The Rational Unified Process, Addison-Wesley, 1999.

[11] Donald J. Reifer, Product Line Management: Best Acquisition Processes/Practices Technology Transfer Kit, Reifer

Consultants, Inc., 1999.

[12] Mark C. Paulk, Charles V. Weber, Bill Curtis and Mary Beth Chrises, The Capability Maturity Model:

Guidelines for Improving the Software Process, Addison-Wesley Publishing Co., New York, NY, 1995.

Object-Oriented Technology (OOT) in Testing
by Larry Bernstein, Have Laptop - Will Travel

Introduction

The telephone gadget is an

enormously successful invention;

each new level of system that

surrounds it has spawned radical

innovations and new services. Each

changes adds complexity to

managing the telephone network.

Object-Oriented Technology (OOT)

is the best answer to controlling the

multiplying configurations that

suddenly appear with new services.

But OOT experiences the same birth

pangs as every other new idea.

In addition, outsourcing is changing

the telecommunications industry. In

the last decade service providers

have moved from developing their

own services and equipment

internally to buying them from third

parties. The split of Lucent

Technologies from AT&T in 1996

was the ultimate expression of this

policy. With outsourcing comes the

challenge of evaluating just how

well vendor systems work before

making a purchase decision.

Test Models

GlobalOne met this challenge with

an innovative use of Teradyne’s

TestMaster™ tool. TestMaster is an

automated test design and coding

tool, which was used for building an

object oriented model of the

outsourced system. The model was

based on the specifications

contained in their Request for

Proposal and from system

descriptions provided by the

supplier. GlobalOne engineers were

able to use this model to first map

the functions they wanted against

the system description and then

against the system itself. This

assured them that the contracted

telephony functions were present

and the GlobalOne system engineers

understood how the new service

would fit into their business

environment. This approach

showed how giving modeling tools

to the customer system engineers

can head off unintended

consequences well before the

system is even developed.

The TestMaster model of the service

node gave the GlobalOne system

engineers insight into the dynamics

of this complex system of systems

that made up the service offering.

With the model, the systems

engineers were able to study the

unique call flow for every variation

of the service. For example,

GlobalOne customers can use one of

12 languages to interact with their

network. Manual evaluation of the

interaction of language selection

based on the object libraries with the

many service variations would have

been a huge task without TestMaster

and supporting evaluation tools. In

traditional manual methods the

system engineers would study the

system specifications and then

develop test cases to verify that the

system worked as they expected.

Finding the error paths is always a

challenge. Typically many review

meetings are needed among the

system engineers themselves and

Continued on page 6

http://www.dacs.dtic.mil/

STN6

then with the vendor’s technical

people to ferret out the potential

incompatibilities. With this

approach, serious problems are often

overlooked, which at best show up

in service testing and at worst are

found by the paying customers.

Problems found and fixed during the

service test effort cost three times

the effort of those found with the

model. Those found by the user add

another factor of ten in cost

escalation.

The TestMaster model-based test

creation method permits the early

involvement of the test organization

in the development process, and is a

powerful tool for facilitating

communication between customer

and supplier engineers. For

example, the service offering

systems use several different

database technologies. To install the

new service a database of customers

was needed which contained

administrative data and their service

requests. The database initialization

process was modeled with

TestMaster, such that the database

records were automatically

generated from the model. Once the

testers saw the strength of the model

they adopted it as their test case

database repository. Consequently,

the TestMaster model of the

databases was used for both

populating the component databases

in the target system, as well as

serving as the input data for the test

creation process. Expected results

from the model were kept and later

compared to the results from

running the test cases against the

system. When there were

differences, analysts would compare

the flow in the model with the flow

in the service offering and find the

problem. This moved debugging

from detective work to analysis.

Problems were found in the object

libraries, component systems, in the

model and even in the system

design.

The model assures all features are

present, not just the headliners.

Once the service offering is installed

in the evaluation labs the model

produces test suites for automatic

test drivers. These tests verify that

the system performs as expected.

The test scripts from the model

resulted in high coverage rates for

feature testing. Quite often testers

are pressed for time and do not have

the resources for exhaustive load

testing and reliability testing. While

testers focus on full load testing they

often do not have the time to run

‘no-load’ tests. These tests set up

one or two simple transactions and

then let the system idle waiting for

new work. With the TestMaster

model, setting up such a script was

easy to do and pointed to reliability

problems in the service offering

system. With the data in hand it was

clear that the offered load was

triggering reliability problems and

there was no argument that it was an

unrealistic test load. A long-term

benefit is that once the system is

installed the model may be used for

regression testing

How to Reap Benefits

There are four broad benefits to

using OOT: the technique can

manage complexity better than

anything else available;

development and testing speed is

increased; reuse becomes possible in

a realistic way that has not been

practical before; and it permits the

scaling-up of systems. To reap these

benefits, there are three factors that

are critical: software testing

techniques must be generally

understood; tools and an

infrastructure must be in place and

middle management must accept the

new mind-set so the culture and

management processes are

appropriate to this new method.

Most of what we hope to gain from

OOT derives from module

encapsulation, and the idea of pre-

built libraries of modules or classes

that are designed and tested for

reuse.

I spoke with Bjarne Stroustrup,

inventor of C++, and he remarked

that OOT forces one to think about

architecture and design from the

beginning, not just as an after

thought. Stroustrup, in his soft-

spoken but direct way, points out

that every significant change carries

risk:

“My number one reason to worry

about OOT is that middle

managers will have to learn new

tricks and techniques to manage

development well. This is not easy.

A development manager, say, is

often in a position to get blamed

for whatever goes wrong, yet most

of the credit goes to their people

when things go well. This doesn’t

encourage risk-taking or

innovation. Unless managers

somehow find the time to get a

basic understanding and a

minimum level of comfort with

OOT, it will seem only a risk, and

token efforts will abound.”

OOT Testing
Continued from page 5

STN 7

In 1988, I ran a project called

MACSTAR whose purpose was to

control changes on a Centrex system

so people could have their telephone

numbers follow them through

moves. OOT was impressive here.

There was a three to one increase in

productivity. Testing proceeded

quickly and new features were

added to the object-oriented sections

with less effort and with fewer

interface changes within the system.

Accommodations to external

changes in the object-oriented

modules caused significantly fewer

source lines to be modified than for

similar changes in structured design

modules. Redesign of selected

subsystems using the object-oriented

paradigm produced savings in

maintenance. This was, however, a

small project, just 10K lines of code,

400 function points and 20 people.

Two years later when there was a

major effort to deploy OOT

throughout the organization, the

problems inherent in larger systems

appeared. There was legacy code to

deal with, the tools were primitive,

the mind set of relational databases

was difficult to change, and there

was a tendency to loose track of

large numbers of object classes.

There was some stumbling and

hesitation. Testers became confused

by the huge object libraries.

But the technology has improved

enough to allow us to produce a

system that changes the way of

running a telephone network.

Previously the focus had been on the

various hardware architectures that

would support broadband services.

An integrated object oriented

operations support system platform

that enables the efficient delivery,

differentiation and billing of new

high-quality services became

possible. Key was the ability to

understand and test new services.

This project changed the paradigm

of software development to such a

degree that the projections of 3,000

people and 36 months to delivery

were invalidated. It took 425 people

15 months to deliver the first

release. There are 14 separate

subsystems. Of these, eight are new

designs and six are encapsulations

of previously built systems which

were not redone. There are 9K

function points, 22 modules, 47

system interfaces and 12 databases.

The object classes are of three types:

communications; administration of

the system itself; and user

interfaces. There are 195 object

classes and 376 objects. The

communications object classes

constituted 190K lines in a 3.5

million line system. The discipline

required to do OOT exposed a 40%

redundancy in the design

specifications and allowed a paring

down to elegance.

A guiding principle from our

previous troubles was that the object

class libraries should be very small,

0.5% of the number of function

points, because we had no tools to

keep track of large numbers of

classes. There is a tendency for

programmers to revert to the

“cottage industry syndrome” of

developing unique dialects that

became unmaintainable. Testers

were charged with accepting or

rejecting new object libraries The

details of the object classes caused

problems at boundary conditions.

For example, when the attributes of

data being passed were slightly

different, modules were not

initialized properly. There was

considerable churn on attributes.

Ultimately Fred Brooks’ realization

of the major paradigm shift was

made real to us also: the greater the

isolation of each object, the greater

its power. Testers made sure that the

isolation became a reality.

About the Author
Mr. Bernstein is president of the

Center of National Software Studies

and is a recognized expert in

Software Technology. He provides

consulting through his firm Have

Laptop - Will Travel and is the

Executive Technologist with

Network Programs, Inc. building

software systems for managing

telephone services.

Mr. Bernstein was an Executive

Director of AT&T Bell Laboratories

where he worked for 35 years.

Author Contact Information
Larry Bernstein

Have Laptop-Will Travel

4 Marion Ave.

Short Hills, NJ 07078-2120

(973) 258-9213

lberstein@worldnet.att.net

http://www.dacs.dtic.mil/
mailto:lberstein@worldnet.att.net

STN8

More Reliable, Faster, Cheaper Testing with Software Reliability
Engineering

Introduction

The testing of software systems is

subject to strong conflicting forces.

A system must function sufficiently

reliably for its application, but it

must also reach the market no later

than its competitors (preferably

before) and at a competitive cost.

Government systems may be less

market-driven, but balancing

reliability, time of delivery, and cost

is also important for them. One of

the most effective ways to do this is

to apply software reliability

engineering to testing (and

development)1,2.

Software reliability engineering has

resulted in a new view of testing, in

which:

1. The most efficient testing

involves activities throughout

the entire life cycle;

2. Testers are empowered to take

leadership positions in pro-

actively meeting user needs; and

3. Testers collaborate closely with

system engineers, system

architects, users, managers, and

developers.

Software reliability engineering

delivers the desired functionality for

a product much more efficiently by

quantitatively characterizing its

expected use. It uses this

information to precisely focus

resources on the most used and/or

most critical functions (by “critical”

I mean having great extra value

when successful or great extra

impact when failing with respect to

human life, cost, or capability) and

to have the tests realistically

represent field conditions. Thus,

software reliability engineering

tends to increase reliability while

decreasing development time and

by John D. Musa, Software Reliability Engineering and Testing Courses

cost. Then software reliability

engineering balances customer

needs for the major quality

characteristics of reliability,

availability, delivery time, and life

cycle cost more effectively by:

1. Setting quantitative reliability as

well as schedule and cost

objectives;

2. Engineering strategies to meet

the objectives; and

3. Tracking reliability in test as a

release criterion.

SRE is a proven, standard,

widespread best practice that is built

on a sound theoretical foundation3

and is widely applicable. As an

example, Tierney4 reported the

results of a survey taken in late 1997

that showed that Microsoft has

applied software reliability

engineering in 50 percent of its

software development groups,

including projects such as Windows

NT and Word. It has been an AT&T

best current practice since May

1991. Qualification as an AT&T best

current practice requires widespread

use, a documented large benefit/cost

ratio, and a probing review by two

boards of high-level managers.

Some 70 project managers also

reviewed the practice of software

reliability engineering. Standards

for approval as an AT&T best

current practice are high; only five

of 30 proposed best current

practices were approved in 1991.

An AIAA standard for software

reliability engineering was approved

in 1993, and IEEE standards are

under development. McGraw-Hill

and the IEEE Computer Society

Press recently recognized the rapid

maturing and standardization of the

field, and have published a

handbook on the topic5.

SRE is low in cost and its

deployment has very little schedule

impact. You can apply software

reliability engineering to any

software-based system, including

legacy systems, beginning at the

start of any release cycle. It

encourages greater communication

among different project roles. With

SRE, testers typically participate as

members of the system engineering

team. They help develop

operational profiles, set failure

intensity objectives, and select

project reliability strategies.

SRE is very customer-oriented. It

involves direct interaction with

customers, and this enhances your

image as a supplier, (if you have any

reasonable degree of competence)

improving customer satisfaction.

SRE is highly correlated with

attaining Levels 4 and 5 of the SEI

Capability Maturity Model.

Process Overview

Applying software reliability

engineering to test involves five

major activities: defining the “just

right” reliability, developing

operational profiles, preparing for

test, executing test, and guiding test.

I will illustrate these activities in the

context of an actual project at

AT&T, which I call Fone Follower. I

selected this example because of its

simplicity; it in no way implies that

software reliability engineering is

limited to telecommunications

systems. I have changed certain

information to keep explanation

simple and protect proprietary data.

Fone Follower is a system that lets

telephone calls “follow” subscribers

anywhere in the world (even to cell

STN 9

Continued on page 10

phones). Subscribers dial into a

voice-response system and enter the

telephone numbers at which they

plan to be at various times.

Incoming calls (voice or fax) that

would normally be routed to a

subscriber’s telephone are then sent

to Fone Follower, which forwards

them in accordance with the

program entered. If there is no

response to a voice call and the

subscriber has pager service, Fone

Follower pages. If there is still no

response or if the subscriber does

not have pager service, Fone

Follower forwards calls to the

subscriber’s voice mail.

Defining “Just Right”

Reliability

To define the “just right” level of

reliability for the product, you set

the failure intensity objective (FIO),

balancing among major quality

characteristics users need. A failure

is a departure of system behavior in

execution from user needs. Failure

intensity is simply the number of

failures per unit time. The best way

to determine the FIO is to use field

data from a similar release or

product. This data includes

customer satisfaction surveys related

to measured failure intensity, and an

analysis of competing products.

Then you engineer project software

reliability strategies to meet these

objectives. For example, you may

determine the resources you will

devote to requirements reviews, the

amount of unit test, the degree to

which you will implement fault

tolerant features, etc.

Developing Operational

Profiles

An operation is a major task of short

duration performed by a system,

which returns control to the system

when complete. It is a logical rather

than a physical concept, in that an

operation can be executed over

several machines and it can be

executed in noncontiguous time

segments. An operation can be

initiated by a user, another system,

or the system’s own controller.

Some examples of operations are a

command activated by a user, a

transaction sent for processing from

another system, a response to an

event occurring in an external

system, and a routine housekeeping

task activated by your own system

controller. The operational profile is

simply the set of operations and

their probabilities of occurrence. An

operational profile is a complete set

of functions with their probabilities

of occurrence. Table 1 shows an

illustration of an operational profile

from Fone Follower.

You can use operational profiles in

system engineering to reduce the

number of operations to those that

are cost effective with respect to life

cycle system costs and benefits, to

plan a competitive release strategy

(schedule a small number of most-

used operations for a speeded-up

first version and defer the others to a

later version), and to focus resources

on the functions and modules that

are most used or most critical. But

operational profiles will also play a

major role in preparing for and

executing a test.

To develop an operational profile,

you identify the initiators of

operations, enumerate the operations

that are produced by each initiator,

determine the occurrence rates of

the operations, and determine the

occurrence probabilities by dividing

the occurrence rates by total

operation occurrence rates.

Many first-time users of SRE think

that determining operation

occurrence rates will be very

Table 1. Fone Follower Operational Profile

Operation Occurrence

Probability

Process voice call, no pager, answered 0.18

Process voice call, no pager, no answer 0.17

Process voice call, pager, answered 0.17

Process fax call 0.15

Process voice call, pager, answer on page 0.12

Process voice call, pager, no answer on page 0.10

Enter forwardees 0.10

Audit section - phone number database 0.009

Add subscriber 0.0005

Delete subscriber 0.0005

Recover from hardware failure 0.000001

Total 1

STN10

Testing with Software Reliability Engineering
Continued from page 9

difficult; our experience indicates

much less difficulty than expected.

Frequently, field data already exists

for the same or similar systems,

perhaps from previous versions. If

not, you can often collect it. Even if

there is no direct data, you can

usually make reasonable estimates

from related information. Finally,

failure intensity achieved in test is

very robust with respect to errors in

operation occurrence rates.

Preparing for Test

To prepare for test, we prepare the

test cases and the test procedures.

We allocate test cases to operations

in accordance with their occurrence

probabilities, with special

consideration given to critical

operations. We then select test cases

within the operation on a uniform

basis. Test procedures are load test

controllers that set up environmental

conditions and randomly select and

invoke test cases from the test case

set, based on the operational profile.

Executing Test

We allocate test time among feature

test, load test, and regression test. In

feature test, test runs are executed

essentially independently of each

other, with interactions minimized.

In load test, large members of test

runs are executed simultaneously.

Load test stimulates failures that can

occur as a result of interactions

among runs. In regression test,

feature test runs are repeated after

each build to see if any changes

made to the system have spawned

faults that cause failures. We

identify failures, determine when

they occurred, and establish the

severity of their impact.

Guiding Test

You will interpret failure data

differently for software you are

developing and software you are

acquiring. For software you are

developing you attempt to remove

the faults that are causing failures.

You track progress, generally at

fixed time intervals, by looking at

the failure intensity to failure

intensity objective (FI/FIO) ratio.

For software you are acquiring (this

can be by contract, purchase, or

reuse from a library), you determine

whether that software should be

accepted or rejected, with limits on

the risks taken. For acquired

software, you interpret failure data

after each failure.

For developed software, we estimate

the FI/FIO ratio from the times of

failure events or the number of

failures per time interval, using

reliability estimation programs such

as CASRE5. These programs are

based on software reliability models

and statistical inference. Figure 1

shows a typical plot of the FI/FIO

ratio. Significant upward trends in

the plot commonly indicate

nonstationary test selection or

system evolution due to poor change

control. Both need correction if you

are to have a quality test effort that

you can rely on. We consider

releasing the software when the

FI/FIO ratio reaches 0.5.

For acquired software we apply a

reliability demonstration chart,

shown in Figure 2. Failure times are

normalized by multiplying by the

failure intensity objective. Each

failure is plotted on the chart.

Depending on the region in which it

falls, you may accept or reject the

software being tested or continue to

test. Figure 2 shows a test in which

the first two failures indicate you

should continue testing, and the

third failure recommends that you

accept the software.

Charts can be constructed for

different levels of consumer risk

(the risk of accepting a bad

program) and supplier risk (the risk

of rejecting a good program).

Figure 1. Plot of FI/FIO Ratio

STN 11

Conclusion

Practitioners in many organizations

(see1,2 for lists) have found software

reliability engineering unique in

providing a standard proven way to

engineer testing for confidence in

the reliability of the software-based

systems they deliver, as they deliver

them in minimum time with

maximum efficiency. It is a vital

skill in today’s marketplace.

References

[1] Musa, J. D. Software Reliability Engineering Website: overview, briefing for managers, bibliography of articles by

software reliability engineering users, information on courses, useful references, Question of the Month:

http://members.aol.com/JohnDMusa/

[2] Musa, J. D. Software Reliability Engineering: More Reliable Software, Faster Development and Testing,

ISBN 0-07-913271-5, McGraw-Hill, New York, 1998.

[3] Musa, J.D., A. Iannino, and K. Okumoto. Software Reliability: Measurement, Prediction, Application,

ISBN 0-07-044093-X, McGraw-Hill, New York, 1987.

[4] Tierney, J. SRE at Microsoft. Keynote speech at the 8th International Symposium on Software Reliability Engineering,

Albuquerque, NM. 1997.

[5] Lyu, M. (Editor). Handbook of Software Reliability Engineering, ISBN 0-07-039400-8, McGraw-Hill, New York (includes

CD/ROM of CASRE program). 1996.

About the Author

John D. Musa teaches courses and

consults in software reliability

engineering and testing. He has been

involved in software reliability

engineering since 1973 and is

generally recognized as one of the

creators of that field. Recently, he

was Technical Manager of Software

Reliability Engineering at AT&T

Bell Laboratories, Murray Hill. He

organized and led the transfer of

software reliability engineering into

practice within AT&T, spearheading

the effort that defined it as a “best

current practice.” Musa has also

been actively involved in research to

advance the theory and practice of

software reliability engineering. He

has published more than 100 articles

and papers, given more than 175

major presentations, and made

several videos. He is principal

author of Software Reliability:

Measurement, Prediction,

Application and author of Software

Reliability Engineering: More

Reliable Software, Faster

Development and Testing.

Musa received an MS in electrical

engineering from Dartmouth

College. He has been listed in

Who’s Who in America and

American Men and Women of

Science since 1990. He is a fellow

of the IEEE and the IEEE Computer

and Reliability Societies and a

member of the ACM and ACM

Sigsoft.

Author Contact Information

John D. Musa

39 Hamilton Road

Morristown, NJ 07960-5341

(973) 267-5284

Fax: (973) 267-6788

j.musa@ieee.org

http://members.aol.com/JohnDMusa

Figure 2. Reliability

Demonstration Chart

http://www.dacs.dtic.mil/
http://members.aol.com/JohnDMusa/
http://members.aol.com/JohnDMusa/
mailto:j.musa@ieee.org

STN12

Website Testing
by Edward Miller, Software Research Inc.

Introduction

The nearly instant worldwide

audience makes a Website's quality

and reliability crucial to its success.

The nature of the WWW and of

Website software pose unique

software testing challenges.

Webmasters, WWW applications

developers, and Website quality

assurance managers need tools and

methods that meet very specific

needs. Our technical approach,

based on extending existing WWW

browsers, offers many attractive

benefits in meeting these needs.

Background

Within minutes of going live, a

WWW application can have many

thousands more users than a

conventional, non-WWW

application. The immediacy of a

Website creates immediate

expectations of quality, but the

technical complexities of a Website

and variances in the available

browsers make testing and quality

control more difficult than

"conventional" client/server or

application testing. Automated

testing of Websites thus is both an

opportunity and a significant

challenge.

Defining Website

Quality & Reliability

Like any complex piece of software

there is no single quality measure to

fully characterize a Website. There

are many dimensions of quality, and

each measure will pertain to a

particular Website in varying

degrees. Here are some of them:

• Timeliness: How much has a

Website changed since the last

upgrade?

• Structural Quality: Are all links

inside and outside the Website

working? Do all of the images

work?

• Content: Does the content of

critical pages match what is

expected?

• Accuracy and Consistency: Are

today's copies of the pages

downloaded the same as

yesterday's?

• Response Time and Latency:

Does the Website server respond

to a browser request within

certain parameters? In an E-

commerce context, what is the

end to end response time after a

SUBMIT?

• Performance: Is the Browser ->

Web -> Website -> Web ->

Browser connection quick

enough? How does the

performance vary by time of day,

by load and usage?

Clearly, “Quality” is in the mind of

the Website user. A poor-quality

Website, one with many broken

pages and faulty images, with CGI-

bin error messages, etc. may cost in

poor customer relations, lost

corporate image, and even in lost

sales revenue. Very complex

Websites can sometimes overload

the user.

Website Architectural

Factors

A Website can be quite complex,

and that complexity can be a real

impediment in assuring Website

quality.

What makes a Website complex?

These are the issues test systems

have to contend with:

Browser. There is a kind of de

facto standard: the Website must

use only those constructs that

work with the majority of

browsers. But this still leaves

room for a lot of creativity, and a

range of technical difficulties.

Display Technologies. What you

see in your browser is actually

composed from many sources: (1)

HTML: Various versions of

HTML must be supported.(2)

Java, JavaScript, ActiveX:

Obviously JavaScript and Java

applets are likely parts of a

Website, and the quality process

must support these. (3) CGI-Bin

Scripts: All of the different types

of CGI-bin scripts (Perl, awk,

shell-scripts, etc.) need to be

handled; tests will need to check

“end to end” operation.

Navigation. Navigation in a

Website often is complex and has

to be quick and error free.

Object Mode. The display you

see in a browser changes

dynamically; the only constants

are the “objects” that make up the

display. Testing ought to be in

terms of these objects.

Server Response. How fast the

Website host responds influences

whether a user moves, continues,

or gives up.

Website Test Automation

Requirements

Assuring Website quality

automatically requires conducting

sets of tests, automatically and

repeatably, that demonstrate

required properties and behaviors.

Here are some required elements of

tools that aim to do this.

STN 13

Continued on page 14

Browser Independent. Tests

should be realistic, but not be

dependent on a particular browser.

No Buffering, Caching. Local

caching and buffering should be

disabled so that timed

experiments are a true measures

of performance.

Object Mode. Object mode

operation is essential to protect an

investment in test suites and to

assure that test suites continue

operating when Website pages

experience change.

Tables and Forms. Even when

the layout of a table or form

varies in the browser's view, tests

of it should continue

independently of these factors.

Tests need to operate from the

browser level for two reasons: this is

where users see a Website, so tests

based in browser operation are the

most realistic; and tests based in

browsers can be run locally or

across the Web equally well. Local

execution is fine for quality control,

but not for performance

measurement work, where response

time including Web-variable delays

reflective of real-world usage is

essential.

Website Dynamic

Validation

Confirming the validity of what is

tested is the key to assuring Website

quality, the most difficult challenge

of all. Here are four key areas

where test automation will have a

significant impact.

1. Operational Testing. Individual

test steps may involve a variety of

checks on individual pages in the

Website:

• Page Consistency. Is the entire

page identical to a prior version?

Are key parts of the text the same

or different?

• Table, Form Consistency. Are all

of the parts of a table or form

present? Correctly laid out? Can

you confirm that selected texts

are in the “right place”?

• Page Relationships. Are all of

the links on a page the same as

they were before? Are there new

or missing links? Are there any

broken links?

• Performance Consistency,

Response Times. Is the response

time for a user action the same as

it was (within a range)?

2. Test Suites. Typically you may

have dozens or hundreds (or

thousands?) of tests, and you may

wish to run these tests in a variety of

modes: unattended, distributed

across many machines,

background, etc.

3. Content Validation. Apart from

how a Website responds

dynamically, the content should be

checkable either exactly or

approximately. Here are some ways

that content validation could be

accomplished:

Structural. All of the links and

anchors should match with prior

“baseline” data.

Checkpoints, Exact

Reproduction. One or more text

elements in a page should be

markable as “required to match”.

Selected Images/Fragments.

The tester should be able to

rubber-band sections of an image

and require that the selection

image match later during a

subsequent rendition of it.

4. Load Simulation. Load analysis

needs to proceed by having a special

purpose browser act like a human

user. This assures that the

performance checking experiment

indicates true performance - not

performance on simulated but

unrealistic conditions. There are

many “http torture machines” that

generate large numbers of http

requests, but that is not necessarily

the way real-world users generate

requests.

Testing System

Characteristics

Considering all of these disparate

requirements, it seems evident that a

single product that supports all of

these goals will not be possible.

However, there is one common

theme: the majority of the work

seems to be based on “What does

the Website look like from the point

of view of the user?” That is, from

the point of view of someone using

a browser to look at the Website.

This observation led our group to

conclude that it would be

worthwhile trying to build certain

test features into a “test enabled web

browser”, which we called

CAPBAK/Web in the expectation

that this approach would let us do

the majority of the Website quality

control functions using that engine

as a base.

Browser Based Solution. With this

as a starting point, we determined

that the browser based solution had

to meet these additional

requirements:

• Commonly Available Technology

Base. The browser had to be based

on a well known base (there appear

to be only two or three choices).

STN14

Website Testing
Continued from page 13

• Some Browser Features Must Be

Deletable. At the same time,

certain requirements imposed

limitations on what was to be

built. For example, if we were

going to have accurate timing

data we had to be able to disable

caching because otherwise we are

measuring response times within

the client machine rather than

“across the Web.”

• Extensibility Assured. To permit

meaningful experiments, the

product had to be extensible

enough to permit timings, static

analysis, and other information to

be extracted.

Taking these requirements into

account, and after investigation of

W3C's Amaya Browser and the

open-architecture Mozilla/Netscape

Browser we chose the IE Browser as

our initial base for our

implementation of CAPBAK/Web.

User Interface. How the user

interacts with the product is very

important, in part because in some

cases the user will be someone very

familiar with Website browsing and

not necessarily a testing expert. The

design we implemented takes this

reality into account.

"C" Scripting. We use interpreted

"C" language as the control

language because the syntax is well

known, the language is fully

expressive of most of the needed

logic, and because it interfaces well

with other products.

Files Interface. We implemented a

set of dialogs to capture critical

information and made each of them

recordable in a text file. The dialogs

are associated with files that are

kept in parallel with each browser

invocation:

• Keysave File. This is the file that

is being created -- the file is

shown line by line during script

recording as the user moves

around the candidate Website.

• Timing File. Results of timings

are shown and saved in this file.

• Messages File. Any error

messages encountered are

delivered to this file. For

example, if a file can not be

downloaded within the user-

specified maximum time an error

message is issued and the

playback continues. (This helps

preserve the utility of tests that

are partially unsuccessful.)

• Event File. This file contains a

complete log of recording and

playback activities that are useful

primarily to debug a test

recording session or to better

understand what actually went on

during playback.

Operational Features. Based on

prior experience, the user interface

for CAPBAK/Web had to provide

for several kinds of capabilities

already known to be critical for a

testing system. Many of these are

critically important for automated

testing because they assure an

optimal combination of test script

reliability and robustness.

• Script Capture/Replay. We had to

be able to capture a user's actual

behavior on-line, and be able to

create scripts by hand.

• Object Mode. The recording and

playback had to support pure-

Object Mode operation. This was

achieved by using internal

information structures in a way

that lets the scripts (either

recorded or constructed) refer to

objects that are meaningful in the

browser context.

• [Adjustable] True-Time Mode.

We assured realistic behavior of

the product by providing for

recording of user-delays and for

efficient handling of delays by

incorporating a continuously

variable “playback delay

multiplier” that can be set by the

user.

• Playback Synchronization. For

tests to be robust there must be a

built-in mode that assures

synchronization so that Web-

dependent delays do not interfere

with proper Website checking.

CAPBAK/Web does this using a

proprietary playback

synchronization method that

waits for download completion

(except if a specified maximum

wait time is exceeded).

• Timer Capability. To make

accurate on-line performance

checks we built in a 1 millisecond

resolution timer that could be

read and reset from the playback

script.

• Validate Selected Text Capability.

A key need for Website content

checking, as described above, is

the ability to capture an element

of text from an image so that it

can be compared with a baseline

value. This feature was

implemented by digging into the

browser data structures in a novel

way (see below for an

illustration). The user highlights

a selected passage of the Web

page and clicks on the “Validate

Selected Text” menu item.

What results is a recorded line

that includes the ASCII text of

what was selected, plus some

other information that locates the

text fragment in the page. During

STN 15

playback if the same text is not

found at the same location an

error message is generated.

• Multiple-playback. We confirmed

that multiple playback was

possible by running separate

copies of the browser in parallel.

This solved the problem of how

to multiply a single test session

into a number of test sessions to

simulate multiple users each

acting realistically.

Test Wizards. In most cases manual

scripting is too laborious to use and

making a recording to achieve a

certain result is equally

unacceptable. We built in several

test wizards that mechanize some of

the most common script-writing

chores.

• Link Wizard. This wizard creates

a script based on the current Web

page that visits every link in the

page. Scripts created this way are

the basis for "link checking" test

Figure 1. Illustration of CAPBAK/Web Validate Selected Text Feature

suites that confirm the presence

(but not necessarily the content)

of URLs.

• FORM Wizard. For E-Commerce

testing which involves FORMS

we included in the system a

FORM Wizard that generates a

script that:

o Initializes the form,

o Presses each push-button

by name,

o Presses each radio button

by name,

o Types a pre-set script fragment

into each text field, and

o Presses SUBMIT.

The idea is that this script can be

processed automatically to

produce the result of varying

combinations of pushing buttons.

As is clear, the wizard will have

pushed all buttons, but only the

last-applied one in a set of radio

buttons will be left in the TRUE

state.

Continued on page 16

• Text Wizard. For detailed content

validation the Text wizard yields

up a script that includes

confirmation of the entire text of

the candidate page. This script is

used to confirm that the content

of a page has not changed (in

effect, the entire text content of

the subject is recorded in the

script).

Figure 2 shows a sample of the

output of theForm Wizard, applied

to our standard test page.

Example Uses

Early applications of the CAPBAK/

Web system have been very

effective in producing experiments

and collecting data that is very

useful for Website checking. While

we expect CAPBAK/Web to be the

main engine for a range of Website

quality control and testing activities,

we've chosen two of the most

typical -- and most important --

applications to illustrate how

CAPBAK/Web can be used.

Performance Testing Illustration.

To illustrate how CAPBAK/Web

measures timing we have built a set

of Public Portal Performance Profile

Test Suites that have these features:

• Top 20 Web Portals. We selected

20 commonly available Websites

on which to measure response

times. These are called the “P4”

suites.

• User Recording. We recorded

one user's excursion through these

suites and saved that keysave file

(playback script).

• User Playback. We played back

the scripts on a 56 kbps modem

so that we had a realistic

STN16

comparison of how long it would

take to make this very-full visit to

our selected 20 portals.

• P4 Timings. We measured the

elapsed time it took for this script

to execute at various times during

the day. The results from one

typical day's executions showed a

playback time range of from 457

secs to 758 secs (i.e., from -19%

of the average to +36% of the

average playback time).

• Second Layer Added. We added

to the base script a set of links to

each page referenced on the same

set of 20 Websites. This yielded

the P4+ suite that visits some

1,573 separate pages, or around

78 per Website. The test suite

takes around 20,764 secs (~5 Hrs

45 mins) to execute, or an

average of 1,038 secs per

Website.

Website Testing
Continued from page 15

• Lessons Learned. It is relatively

easy to configure a sophisticated

test script that visits many links in

a realistic way, and provides

realistic user-perceived timing

data.

E-Commerce Illustration. This

example shows a typical

E-Commerce product ordering

situation. The script automatically

places an order and uses the Validate

Selected Text sequence to confirm

that the order was processed

correctly. In a real-world example

this is the equivalent of (i) selecting

an item for the shopping basket, (ii)

ordering it, and (iii) examining the

confirmation page's order code to

assure that the transaction was

successful. (The final validation

step of confirming that the ordered

item was actually delivered to a

specific address is not part of what

CAPBAK/Web can do.)

Figure 2. Sample of Output of FORM Test Wizard

void name()

{

/* Produced by CAPBAK/Web [IE] Ver. 1.5 Form Wizard */

/* (c) Copyright 1999 by Software Research, Inc. */

WT_InitLink("http://www.testworks.com/Products/Web/CAPBAK/example1/");

WT_SubmitForm(FORM:0:12, "RESET FORM");

WT_SelectOneRadio(FORM:0:0, "now", "TRUE");

WT_SelectOneRadio(FORM:0:1, "next", "TRUE");

WT_SelectOneRadio(FORM:0:2, "look", "TRUE");

WT_SelectOneRadio(FORM:0:3, "no", "TRUE");

WT_SelectCheckBox(FORM:0:4, "concerned", "TRUE");

WT_SelectCheckBox(FORM:0:5, "info", "TRUE");

WT_SelectCheckBox(FORM:0:6, "evaluate", "TRUE");

WT_SelectCheckBox(FORM:0:7, "send", "TRUE");

WT_FormTextInput(FORM:0:8, "TestWorks");

WT_FormTextInput(FORM:0:9, "TestWorks");

WT_FormTextInput(FORM:0:10, "TestWorks");

WT_FormTextInput(FORM:0:11, "TestWorks");

WT_SubmitForm(FORM:0:13, "SUBMIT FORM");

}

• Typical Order Form.

We based this script on a

typical order form that

collects customer

information including, for

example, a code number (a

credit card number).

• Type-In with Code

Number. Starting with the

FORM Wizard generated

script, we modify it to

include only the parts we

want, and include the code

number 8889999 (See

Figure 1).

• Response File. Once the

playback presses the

SUBMIT button the

WebServer response page

shows up displaying the

response to the code

number. We use the

Validate Selected Text

feature (see Figure 1) to capture

the response number text.

• Error Message Generated. If the

CGI-bin scripts make a mistake

this will be caught during

playback because the expected

exact text 8889999 will not be

present, it will be something else.

• Completed Test Script. Figure 3

is an illustration of the complete

test script for CAPBAK/Web that

illustrates this sequence of

activities.

• Lessons Learned. This example

illustrates how it is possible to

automatically validate a Website

using CAPBAK/Web by detecting

when an artificial order is

misprocessed.

STN 17

Summary

All of these needs and requirements

impose constraints on the test

automation tools used to confirm the

quality and reliability of a Website.

The CAPBAK/Web approach offers

some significant benefits and

technical advantages when dealing

with complicated Websites. Better,

more reliable Websites should be the

result.

Resources

This paper is based on many sources

and relies in part on a prior White

Paper found at: www.soft.com/

Products/Web/Technology/

website.quality.challenge.html

A more complete version of this

paper can be found at:

www.soft.com/Products/Web/

Technology/website.testing.html

You can learn more about the

CAPBAK/WEB system by taking a

tour at: www.soft.com/Products/

Web/CAPBAK/Documentation.IE/

CBWeb.GUI5.html

There is a very detailed description

of the P4 Family of CAPBAK/Web

examples at: www.soft.com/

Products/Web/CAPBAK/pppp.html

About the Author
Dr. Edward Miller is Chairman of

Software Research, Inc., San

Francisco, California, where he has

been involved with software test

tools development and software

engineering quality questions. Dr.

Miller has worked in the software

quality management field for 25

years in a variety of capacities, and

has been involved in the

development of families of

automated software and analysis

support tools. He was chairman of

the 1985 1st International

Conference on Computer

Workstations, and has participated

in IEEE conference organizing

activities for many years. He is the

author of Software Testing and

Validation Techniques, an IEEE

Computer Society Press tutorial text.

Dr. Miller received a Ph.D.

(Electrical Engineering) degree from

the University of Maryland, an M.S.

(Applied Mathematics) degree from

the University of Colorado, and a

BSEE from Iowa State University.

Author Contact Information
Edward Miller

Software Research, Inc.

901 Minnesota Street

San Francisco, CA 94107

(800) 942-SOFT

miller@soft.com

www.soft.com

Figure 3. Script for E-Commerce Test Loop

void name()

{

/* Recording by CAPBAK/Web [IE] Ver. 1.5 (c) Copyright 1999 by Software Research, Inc. */

WT_InitLink("http://www.soft.com/Products/Web/CAPBAK/example1/example1broken.html");

WT_SelectOneRadio(FORM:1:0, "buying-now", "TRUE");

WT_SelectOneRadio(FORM:1:1, "next-month", "FALSE");

WT_SelectOneRadio(FORM:1:2, "just-looking", "FALSE");

WT_SelectOneRadio(FORM:1:3, "no-interest", "FALSE");

WT_SelectOneRadio(FORM:1:4, "Yes", "TRUE");

WT_SelectOneRadio(FORM:1:5, "Yes", "TRUE");

WT_SelectOneRadio(FORM:1:6, "Yes", "TRUE");

WT_SelectOneRadio(FORM:1:7, "Yes", "TRUE");

WT_FormTextInput(FORM:1:8, "Mr. Software");

WT_FormTextInput(FORM:1:9, "415-957-1441");

WT_FormTextInput(FORM:1:10, "info@soft.com");

WT_FormTextInput(FORM:1:11, "8889999");

WT_SubmitForm(FORM:1:13, "SUBMIT FORM");

WT_Wait(3425);

WT_ValidateText(12, 143, "88899999");

}

http://www.dacs.dtic.mil/
http://www.soft.com/
http://www.soft.com/Products/Web/Technology/website.quality.challenge.html
http://www.soft.com/Products/Web/Technology/website.testing.html
http://www.soft.com/Products/Web/CAPBAK/pppp.html
http://www.soft.com/Products/Web/CAPBAK/Documentation/IE/CBWeb.GI15.html

STN18

Improving Information Quality for the Warfighter through
Self-Checking Systems
by Tod Reinhart, Air Force Research Laboratory, Dr. D. Joel Mellema, Raytheon Systems
Company, and Carolyn Boettcher, Raytheon Systems Company

Introduction

Testing of mission-critical systems

to a high degree of reliability has

been a long time problem for the

military services. As a result,

system failures may occur in the

field due to faults that result from

unusual environmental conditions or

unexpected sequences of events that

were never encountered in the

laboratory. The types of systems we

are interested in are those that must

operate within the constraint of real-

time deadlines and produce inexact

outputs based on computations from

a succession of heuristic and

approximate algorithms. Such

systems, which include complex

software and hardware interactions,

are particularly difficult to validate

and test. To improve the validation

and test process and deliver more

reliable systems, we have been

experimenting with self-checking

systems that continuously monitor

themselves to detect suspicious

events, which may indicate residual

errors at a deep performance level.

Under the Air Force Self Checking

Embedded Information System

Software (SCEISS) program,

theoretical university results are

being extended to new classes of

problems while applying these new

types of result checkers to real-time

embedded applications. The

preliminary results reported here

include a description of the example

applications and their checkers, the

process used to select checkers, and

some initial data points on any

additional software costs that may

accrue due to the development and

test of checkers.

Problem Statement

Like the military services, Raytheon

has a long-term interest in and

commitment to solving the problem

of residual errors that are not

detected and corrected before a

system is deployed. Such errors are

like a time bomb, waiting for just

the right combination of

circumstances to cause significant

performance degradation or even

catastrophic system failure. To find

solutions to this problem, several

years ago Raytheon surveyed

problem reports of errors that were

not detected in a production radar

system until after radar subsystem

integration. It was found that many

of the errors resulted from an

unusual combination of

circumstances that were unlikely to

be encountered in the integration

laboratory and that might not even

be encountered during operational

testing, e.g., flight test.

Testing is the most widely used

method of validating that systems

are performing as requirements

dictate. However, it has been shown

that it is not feasible to use testing

alone to validate large systems to a

high degree of reliability1. As an

alternative, correctness-proving

techniques are sometimes used to

verify system correctness.

However, because of the difficulty

of these techniques, it is not

practical to apply them to anything

but small, well contained portions of

larger systems, such as a trusted

kernel.

 Another approach that is often used

to ensure reliable performance is

functional redundancy. For

example, three versions of software

may be independently implemented

to perform a given function. The

results of each version are

compared, with a two out of three

majority declared to be correct.

However, there are a number of

practical problems with functional

redundancy. Often the

implementations whose results are

compared are not statistically

independent, because even though

system designers and implementers

are working completely

independently, they often make

correlated errors. In addition, the

amount of run-time resources

required to execute the function is

increased by a factor of three. In

systems where run-time resources

are tight, this multiplicative increase

may not be acceptable.

How then can residual software

errors, which significantly increase

the DoD’s cost of ownership and

may contribute to mission failures,

be significantly reduced or

effectively eliminated? We

concluded that an entirely new

paradigm was needed to ensure that

large, complex systems with limited

run-time resources can be

maintained in a cost effective

manner so that they continue to

operate correctly.

Self-Checking

Enbedded Information

System Technology

The Self Checking Enbedded

Information System Software

(SCEISS) program is applying

Checker technology to a range of

embedded information system

STN 19

Continued on page 20

applications with the expectation

that this technology will result in a

dramatic reduction in fielded

software errors and maintenance

costs. Checker technology is based

on checker software that executes at

critical points to check the

correctness of intermediate system

results. Checkers become a

permanent part of the software -

they are retained throughout the

system operational life cycle.

Checkers keep checking and

checking and checking… even after

the system is deployed. Because

they are always checking, checkers

will eventually encounter and detect

those errors and unexpected

conditions that cause degraded

system performance whenever and

wherever those conditions occur.

Checkers can be considered to be

analogous to hardware built-in-test

that executes periodically

throughout the mission to decide

whether the hardware is functioning

correctly. Like hardware built-in-

test, checkers report any anomalies

detected during the mission so that

errors can be fixed.

Definition of a Simple
Checker
A simple checker is special software

that is embedded in code to

continually check results over a

large number of executions. It must

have a good probability of

eventually detecting any errors,

especially after many executions,

while maintaining a very low

probability of false alarm (i.e., a

simple checker must rarely or never

declare a correct result to be

erroneous). By definition, a simple

checker must be much simpler and

more reliable than the algorithm

being checked. As a result of this

definition, the execution and

memory overhead added by a

checker is small. In addition, the

fact that the checker is simpler than

the original algorithm helps to

ensure its statistical independence

from the algorithm being checked.

Although there are some similarities

between checkers and traditional

fault tolerance techniques based on

redundancy, checkers are different

from traditional software fault

tolerance techniques in two

important ways: they are statistically

independent from the original

algorithm; and they do not double or

triple the cost and runtime overhead

of a function being checked.

Prior Checker Research
Universities, Raytheon, and the Air

Force have sponsored prior checker

research. The seminal research in

checkers has been ongoing for more

than 10 years, led by Dr. Manuel

Blum at the University of California

at Berkeley, who defined the results

checking paradigm that is the

foundation for the SCEISS effort2.

After determining that theoretical

checker results might be applicable

to real-life embedded applications,

Raytheon and the University of

California jointly funded research to

extend checkers to some realistic

avionics applications. In particular,

this effort resulted in the definition

of a general method for checking the

results of a Fourier transform

implemented in limited precision,

fixed point arithmetic, as reported in

[3] and [4]. With Dr. Blum

consulting, Raytheon began a small

checker pilot program as part of a

production radar upgrade program,

described in [5]. We determined that

two of the three checkers developed

under the pilot program, but not

deployed, would have detected

errors that were uncovered later

during flight test.

What’s Good About Results
Checking?
Many undetected software errors

involve rare combinations of

circumstances. Because of their

rarity, a very large number of

independent tests would be needed

to create these special

circumstances, if they can be

reproduced at all in the laboratory.

Because they are embedded in the

operational software, checkers can

detect errors during all phases of

testing and operational use. In fact,

checkers can execute as often as the

software executes. For example, a

computation occurring every 10

milliseconds will be checked a

million times every three hours. In

addition, checkers can detect

erroneous results that do not

produce obvious symptoms at the

system level, and thus, might easily

be overlooked by testers. As a

result, errors can be corrected even

before they cause externally

observable system degradation.

Checkers are independent of the

system design methodology, the

software implementation language,

and the embedded processor on

which the software executes.

Instead, checkers are based on a

priori mathematical principles or

physical laws governing the

computations being checked. As a

result, checkers can be applied to

legacy systems that are being

upgraded almost as easily as they

can be applied to new systems.

Although particular checkers may

be application domain dependent,

the self-checking approach can be

generally applied in any application

domain.

STN20

Self-Checking Systems
Continued from page 19

Checking for the Pentium
Division Bug
The division bug in Intel’s original

release of the Pentium processor

provides an excellent example of the

potential value of checkers and

illustrates that checkers can be

useful for detecting hardware bugs

as well as software bugs. The

Pentium division bug evidenced

itself very rarely, less than 1 in every

8 billion inputs. However, even

though the bug rarely caused a

problem, users of the Pentium

processor soon discovered it. As a

result, Intel was forced to recall the

“buggy” processors and correct the

error.

When news of the Pentium division

bug was published, Blum and

Wasserman invented a software

checker/corrector that provides an

“a priori” solution to the Pentium

bug6. Their checker not only detects

the erroneous division result, but

also corrects the result. The

Pentium division checker/corrector

does not even need to know the type

of error or even that an error is

present in order to detect and

correct it.

Applying Checkers to a

Production Radar

Upgrade Program

Begun early in 1998, SCEISS is

demonstrating the efficacy of

checkers when used as an integral

part of the system development

process to improve the quality of

delivered systems7. SCEISS will

also help to transition checkers from

theory to practice. In 1998, SCEISS

applied self-checking technology to

a production radar upgrade program

that was adding a range gated high

(RGH) pulse repetition frequency

(PRF) mode to the existing

software. The mode code is reused

from another radar program with

substantial modifications needed to

adapt it to a different platform. The

SCEISS team analyzed the software

requirements for the modifications

and identified candidate functions

for checking.

Checking the CFAR Loop
From the candidate functions

identified during the requirements

analysis, the constant false alarm

rate (CFAR) control loop was

selected for checking. There were

several reasons why the CFAR loop

was considered a good candidate.

• The CFAR control loop has a

direct impact on detected targets

and false alarms that are critical

performance measurements.

• Domain experts agreed that the

CFAR loop often caused

problems during radar system

integration and flight test.

• The requirements were quite

complicated, making it more

likely that coding errors would

occur in implementing them.

• The CFAR loop is a specific

example of a general type of

control loop calculation. Hence,

a checker invented here might be

applicable across a wide class of

control problems.

CFAR Checker Design
The CFAR threshold calculation is

an example of an algorithm where

there are no simple rules for

determining if a result is right or

wrong. As a result, our CFAR

checker looks for “suspicious”

results that probably indicate

significant system performance

degradation, rather than definitely

“wrong” results.

In general control theory, the control

loop seeks a stable threshold value

that keeps the system operating in

an optimal manner, even while the

environment, as measured by the

sensor being controlled, is changing.

To do this, the threshold must be

continually adapted to changing

environmental conditions based on

feedback from the sensor. The

requirements in this case specify

minimum and maximum values for

the CFAR threshold. If the

calculated value is outside of the

specified range of 3.0 to 5.8, it is

reset to the maximum or minimum

value as appropriate.

To help quantify “suspicious”

values, we first simulated the CFAR

threshold calculation 100,000 times

using randomly generated input data

representative of that seen in a real

system. Based on statistics of the

expected distribution of threshold

values, we predicted that the

threshold value would be in the

range of 3.5 to 3.8 for

approximately 98% of the time.

Therefore, values outside of the

range 3.5 to 3.8 might be considered

suspicious. We subsequently

decided to set the checker to fire

more conservatively at values

outside of 90% of the legal range, or

3.28 - 5.52, respectively. In

addition, the checker fired only

when the calculated threshold

exceeded the high or low value over

90% of the time after 50 values were

collected at half-second intervals.

Metrics Collected
The radar development team and

SCEISS team worked together to

STN 21

implement the simple checker

described above. In coding the

checker, we added 15 Jovial source

lines of code (SLOC) to the

software module that calculated the

CFAR loop threshold, which was

originally about 100 SLOC. In

addition, 19 SLOC were added to

the Jovial Compool containing the

global data definitions. The

percentage increase in the SLOC

gives a rough estimate of the

percentage additional effort that

would be required to implement

checkers, assuming that the same

productivity rate is used to predict

the cost of developing checkers as is

used to predict the cost of

developing the application.

The performance overhead was

estimated by comparing the

operations performed by the checker

compared to the operations

performed by the algorithm.

Performance overhead for the CFAR

loop checker was estimated to be

less than 5%. Checking was

performed in the system integration

laboratory in parallel with the

regular system integration effort, so

the program’s flight test schedule

would not be perturbed. The

checker was run on four separate

occasions in the integration

laboratory against three versions of

the software. On the first three

occasions, the threshold values were

consistently low causing the checker

to fire under several different test

conditions.

The software development team

responsible for the production tape

upgrade was informed about the

problems with the CFAR loop

uncovered by the checker.

Subsequently, the application code

was corrected and the checker was

run for the fourth and final time in

the integration laboratory after the

system had been in flight test for

some time. This final checker

demonstration showed that the

CFAR loop performance had been

considerably improved.

We believe that this experiment

illustrates the value of even very

simple checkers. We found that

even with a relatively insensitive

checker, we were able to detect

suspicious events occurring in the

system which otherwise might not

have been detected. For a more

detailed description of the CFAR

loop checker, the reader is referred

to the SCEISS Interim Report for

19988.

Applying Checkers to a

Technology Program:

Ongoing Proof of

Concept Demonstration

In 1999, as our second proof-of-

concept demonstration of checkers

under SCEISS, we chose the Theatre

Missile Defense Smart Sensor and

Automatic Target Recognition

(TESSA) program. TESSA is in the

fourth phase of a technology

demonstration using the F-15E

aircraft and radar and FLIR sensor

suite. During the TESSA IV flight

test, fusion of SAR and IR sensor

data for Automatic Target Cueing

and Recognition in attack operations

will be evaluated. In the

demonstration, the SAR will be used

to cue the IR sensor to interesting

objects. The flight test will include

modified APG-70 radar modes and a

modified LANTIRN targeting pod,

as well as new sensor fusion code.

The objective of the TESSA

program is to enhance the F-15E’s

capability to locate, identify, and

destroy stationary and moving threat

TMD assets. To accomplish this,

the radar improvements include

enhanced SAR resolution (4’ x 6’

maps), detecting probable ground

targets, and overlaying the most

likely targets on the SAR map

display. A new Fused Feature

Automatic Target Recognition

(FFATR) processor will be installed

on the aircraft to host the sensor

fusion software. A new interface

will be provided between the radar

and the FFATR in order for the radar

to cue the FLIR. In addition, the

code in the F-15E Central Computer

will be modified to support the

additional TESSA functionality.

The TESSA radar processing detects

an area of interest (i.e., an object

that is likely to be man-made) in a

radar map. In addition, the radar

estimates the size, shape, and

orientation of the object. The area of

interest is sent to the fusion engine

to cue the FLIR. This description

suggests several points where

checkers might be used. For

example, checking the radar data

used to cue the FLIR ensures that

the radar is improving, rather than

degrading the FLIR performance.

Three to six checkers are being

added to the automatic target cueing

(ATC) mode of the APG-70 radar

software. Although the radar ATC

algorithms were previously

validated in a laboratory

demonstration using radar maps and

FLIR images recorded during flight

test, the implementation of those

algorithms in the APG-70

operational software is all new code.

This experiment is currently

ongoing and results will be

published in the SCEISS interim

report for 1999.

Continued on page 22

STN22

Summary and

Conclusions

Under the SCEISS program, we are

making progress towards

demonstrating the advantages of

self-checking systems and

transitioning self-checking system

technology from theory to practice.

We took advantage of a production

radar tape upgrade that was starting

software testing and proceeding into

flight test during the first year of the

SCEISS program. We implemented

a checker for deep system

performance to detect suspicious

behavior that is often overlooked

during traditional testing, but which

indicates that significant

performance degradation could

occur after the system is deployed.

As a result, suspicious behavior was

observed and reported back to the

regular program development team

for further analysis and correction of

the problem. From this experiment,

we collected evidence that effective

checkers can be implemented at a

relatively small additional cost with

minor runtime overhead to the

software being checked.

We also identified candidate

checkers for the TESSA IV

technology demonstration program

that have the potential for reducing

risk as the program proceeds into

laboratory and flight test in 1999.

We are in the process of

implementing those checkers and

exercising them in the integration

laboratory and in flight test. The

metrics collected during the TESSA

IV demonstration will provide

further evidence of the cost

effectiveness of using self-checking

techniques to improve the quality

and reliability of embedded

information systems.

Self-Checking Systems
Continued from page 21

References

[1] Butler, R., Finelli, G., “The Infeasibility of Quantifying the Reliability of Life-Critical Real-Time Software”, IEEE

Transactions on Software Engineering, Vol. 19, No. 1, January, 1993.

[2] Blum, M., Kannan, S. “Designing Programs that Check their Work”, Proceedings of the ACM 21st Annual Symposium on

the Theory of Computing, May, 1989.

[3] Wasserman, H., Blum, M., “Software Reliability via Run-Time Result-Checking”, Journal of the ACM, Vol. 44, No. 6,

November, 1997.

[4] Shreve, D., Mellema, D. J., Boettcher, C., “Real-time Checkers: Built-in Test for Mission Critical Software”, IEEE/AIAA

Digital Avionics Systems Conference Proceedings, Vol. I, October 26-30, 1997.

[5] Boettcher, C., Mellema, D. J., “Program Checkers: Practical Applications to Real-Time Software”, Test Facility Working

Group Conference, 1995.

[6] Blum, M., Wasserman, H., “Reflections on the Pentium Division Bug”, IEEE Transactions on Computers, Vol. 45, No. 4,

April, 1996.

[7] Reinhart, T., Boettcher, C., Wasserman, H., “An Automated Testing Methodology Based on Self-Checking Software”,

NAECON Proceedings, IEEE, July, 1998.

[8] Self-Checking Embedded Information System Software Interim Report, December 1997 - November 1998,

Raytheon Systems Company, Los Angeles, CA.

In out years of the SCEISS program,

we are planning further

demonstration programs using

checker technology. We believe that

checkers will prove especially

valuable in space systems where

reliability is especially important.

Author Contact Information
Tod J. Reinhart

AFRL/IFTA

Embedded Information Systems

2241 Avionics Circle, Suite 32

WPAFB OH 45433-7334

Tod.Reinhart@sensors.wpafb.af.mil

(937) 255-6548 ext. 3582

 DSN 785-6548 x3582

Fax: (937) 656-4277

DSN-Fax 656-4277

D. Joel Mellema, and

Carolyn Boettcher

Raytheon Systems Company

www.raytheon.com/rsc/

http://www.dacs.dtic.mil/
mailto:Tod.Reinhart@sensors.wpafb.af.mil
http://www.raytheon.com/rsc/

STN 23

What is Hammer?

The Hammer Award is presented to

teams of federal employees who have

made significant contributions in

support of reinventing government

principles. The award is the Vice

President’s answer to yesterday’s

government and its $400 hammer.

Fittingly, the award consists of a $6.00

hammer, a ribbon, and a note from

Vice President Gore, all in an

aluminum frame. More than 1,000

Hammer Awards have been presented

to teams comprised of federal

employees, state and local employees,

and citizens who are working to build

a better government.

The Need … Producing the

Annual DoD In-House RDT&E

Activities Report

Preparation and publication of the

annual DoD In-House Research,

Development, Test and Evaluation

(RDT&E) Activities Report, was

identified as an effort requiring

process improvement, by the

Executive Working Group (EWG)

established by the Director of

Defense Research and Engineering

(DDR&E), to steer the Science and

Technology (S&T) Business Process

Reengineering (BPR) program. The

report has been produced in official

form for the DDR&E since 1966,

and is the DDR&E’s central source

of information on laboratory status.

In the past, the document was

generated in hard copy form, using

traditional data collection methods,

taking up to two years to complete

the publication cycle from initiation

of the data call to printing and

distribution of hard copies. This

process severely degraded the value

of the report, primarily due to the

perishable nature of the information

it contained.

To guide the process improvement

initiative, the EWG further

established an In-House Functional

Improvement Team (IH FIT),

consisting of members from each of

the Services, the Deputy Director of

Defense Research and Engineering

for Lab Management and

Technology Transition (DTSE&E

LM&TT), Director, Test, Systems

Engineering and Evaluation

(DTSE&E), the Uniformed Services

University of Health Sciences

(USUHS), and the S&T BPR office.

The team’s charter was to reduce

the time and cost of publishing the

report by reinventing the current

process and exploiting the latest

technologies.

The Web based process developed

by the DACS dramatically stream-

lined the report publication cycle:

• The time to publication was

reduced by over 75%;

• The cost of producing the report

was lowered by over 50%; and

• Work hours spent by those

producing the report were reduced

by almost 60%.

The DACS is a DoD Information

Analysis Center (IAC) sponsored by

DTIC that focuses on software

technology. The DACS serves as a

central source for current and readily

usable information concerning

software technology and

development, and provides technical

assistance and solutions to user-

specified problems through TATs.

Mr. Dan Snell

DACS Deputy Director

P.O. Box 1400

Rome, NY 13442–1400

(800)214-7921

Fax (315) 334-4964

dan.snell@ssc.de.ittind.com

DACS Technical Area Task (TAT), “Science and
Technology Corporate Information Management
Support,” Wins the Coveted Hammer Award

Here are the people that
bring you this fine
publication, the:

DoD Software Tech News

Editorial Board Members

Lon R. Dean, Editor,

DoD Software Tech News

ITT Industries, Systems Div

Paul Engelhart -

DACS COTR

Air Force Research Laboratory

Information Directorate/IFTD

Elaine Fedchak

ITT Industries, Systems Div

Morton A. Hirschberg,

Editorial Board Chariman

Information Science &

Technology Directorate,

US Army Research Laboratory

Thomas McGibbon,

DACS Director

ITT Industries, Systems Div

Marshall Potter

DDR&E (IT)

Dan Snell,

DACS Deputy Director

ITT Industries, Systems Div

Nancy L. Sunderhaft

ITT Industries, Systems Div

A special thanks to

Morton Hirschberg,

newly elected

Editorial Board Chairman

mailto:dan.snell@ssc.de.ittind.com

DoD Data & Analysis Center for Software
P.O. Box 1400
Rome, NY 13442-1400

Return Service Requested

First-Class Mail
U.S. Postage

P A I D
Colo. Spgs., CO
Permit No. 745

Software Tech News on the World Wide Web

This newsletter, including referenced full-length

articles, is available on the web at:

www.dacs.dtic.mil/awareness/newsletters/listing.shtml

Other Software Testing On-line Resources

DoD DACS Software Testing Topic Area - www.dacs.dtic.mil

AFOTEC Air Force Operational Test and Evaluation Center - www.afotec.af.mil

Director, Test, Systems Engineering & Evaluation - www.acq.osd.mil/te/

IEEE Test Technology, Technical Council - www.computer.org/tab/tttc/tac/home.html

Software Research Institute- www.soft.com

Software Testing Institute - www.ondaweb.com/sti/

STORM: A nexus of Software Testing Online Resources - www.mtsu.edu/~storm/

STSC Software Testing Page - www.stsc.hill.af.mil/swtesting/index.asp

Article Reproduction

Articles may be reproduced as long as the DACS copyright message is noted as follows:

“This article was originally printed in the DoD DACS Software Tech News, vol. #, no. #.

Requests for copies of the referenced newsletter may be submitted to the following address:

DoD Data & Analysis Center for Software

Attn: DACS Newsletter Editor

PO. Box 1400

Rome, NY 13442-1400

(800) 214-7921; fax (315) 334-4964;

cust-liasn@dacs.dtic.mil

An archive of past newsletters is available at www.dacs.dtic.mil/awareness/newsletters/listing.shtml.”

In addition to the copyright message, we ask that you send us three copies of any document that references the DoD

Software Tech News.

Thank you for your interest in the products and services of the DoD Data & Analysis Center for Software.

http://www.dacs.dtic.mil/awareness/newsletters/listing.shtml
http://www.dacs.dtic.mil/
http://www.afotec.af.mil/
http://www.acq.osd.mil/te/
http://www.computer.org/tab/tttc/tac/home.html
http://www.soft.com/
http://www.ondaweb.com/sti/
http://www.mtsu.edu/~storm/
http://www.stsc.hill.af.mil/swtesting/index.asp
http://www.dacs.dtic.mil/awareness/newsletters/listing.shtml
mailto:cust-liasn@dacs.dtic.mil

DoD DACS Products & Services Order Form

Name: Position/Title:

Organization: Acronym:

Address:

City: State: Zip Code:

Country: E-mail:

Telephone: Fax:

Product Description Format Quantity Price Total

The DACS Information Package
❏ Including: 2 recent Software Tech News newsletters, and

several DACS Products & Services Brochures Documents FREE FREE

Empirical Data
❏ Architecture Research Facility (ARF) Error Dataset Disk $ 50
❏ NASA / Software Engineering Laboratory (SEL) Dataset CD-ROM $ 50
❏ NASA / AMES Error/Fault Dataset Disk $ 50
❏ Software Reliability Dataset Disk $ 50
❏ DACS Productivity Dataset Disk $ 50

Technical Reports
❏ A Business Case for Software Process Improvement Document $ 25
❏ ROI from Software Process Improvement Spreadsheet Disk $ 40
❏ A History of Software Measurement at Rome Laboratory Document $ 25
❏ An Analysis of Two Formal Methods: VDM and Z Document $ 25
❏ An Overview of Object-Oriented Design Document $ 25
❏ Artificial Neural Networks Technology Document $ 25
❏ A Review of Formal Methods Document $ 25
❏ A Review of Non-Ada to Ada Conversion Document $ 25
❏ Using Defect Tracking & Analysis to Improve Software Qual Document $ 50
❏ Software Design Methods Document $ 25
❏ Distributable Database Technology Document $ 25
❏ Electronic Publishing on the World Wide Web:

An Engineering Approach Document $ 5
❏ Object Oriented Database Management Systems (Revisited) Document $ 50
❏ Software Analysis and Testing Technologies Document $ 25
❏ Software Design Methods Document $ 25
❏ Software Prototyping and Requirements Engineering Document $ 25
❏ Software Interoperability Document $ 25
❏ Software Reusability Document $ 25
❏ Understanding & Improving Technology Transfer in Soft Eng Document $ 50

Bibliographic Products
❏ Rome Laboratory Research in Software Measurement Document $ 25
❏ DACS Custom Bibliographic Search Disk $ 40
❏ DACS Software Engineering Bibliographic Database (SEBD) CD-ROM $ 50

Number of Total
Items Ordered CostMethod of Payment:

❏ Check ❏ Mastercard ❏ Visa

Credit Card # ___ Expiration Date _____________________________

Name on Credit Card ___________________________________ Signature __________________________________

Mail this form or: Phone: (315) 334-4905, Fax: (315) 334-4964
E-mail: cust-liasn@dacs.dtic.mil

This form is also on-line at: www.dacs.dtic.mil/forms/orderform.shtml

*Note: All Disks
are available in

PC or Mac

FREE withSpreadsheet

SALE
Item!

NEW!

NEW!

NEW!

mailto:cust-liasn@dacs.dtic.mil
http://www.dacs.dtic.mil/forms/orderform.shtml

DoD Data & Analysis Center for Software

Attn: DACS Customer Liaison

PO. Box 1400

Rome, NY 13442-1400

---fold here---

---fold here---

Fix

postage

here

